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A quantum chemical approach based on predominantly covalent “normalized ion energies” has been 
developed for estimating structures and energies for defect clusters in quenched nonstoichiometric 
wustite (Fe,+,O). Small defect clusters of zinc blende structure show special stability over other 
clusters considered. Of these, either a 13 : 5 or a 16 : 7 defect cluster (13 or 16 Fe3+ vacancies and 5 or 7 
tetrahedral Fe’+ interstitials) have the proper structure and composition to account for the observed P’ 
and P” phases in wustite. o 1984 Academic press, IK. 

Introduction shown in Fig. 1. Structure models for the 
defect clusters based on X-ray (2), neutron 

The lowest oxide of iron, wustite, exists (6), and electron diffraction data (7, 8) 
as a stable phase only above 570°C. Wustite have been proposed with the constituent 
has the sodium chloride structure but at at- 4: 1 defects sharing edges or corners, and 
mospheric pressure is always nonstoi- there has also been a theoretical study (9) 
chiometric, and can be represented by using ion-ion pairwise potentials, with po- 
Fel-,O, where x varies between 0.05 and larization energies included. 
0.15. It has been known since the early From diffraction intensity ratios, it is 
work of Roth (I), and Koch and Cohen (2) possible to find the ratio of the number of 
that the nonstoichiometry is not accommo- octahedral vacancies (m) to the number of 
dated by x iron vacancies, with 2x ferrous tetrahedral interstitials (n) (6, 10): 
ions oxidized to the ferric state. Rather, the 
massive nonstoichiometry involves defect 

p = mln 

clusters in which some of the ferric ions Gavarri et al. (6) determined that p was 
occupy interstitial (tetrahedral) sites. It is nearly constant and equal to 2.4 2 0.5 over 
now generally believed that these defect the whole range of wustite nonstoichiome- 
clusters involve the so-called 4: 1 defect try. If one assumes for present purposes 
(J-5), in which a tetrahedral ferric intersti- that most vacancies in wustite are associ- 
tial cation is surrounded by four octahedral ated with defect clusters, themselves of 
vacancies and four oxygen anions, as constant size, then this ratio provides a 

* Address correspondence to the Department of measure of possible cluster size and com- 
Chemistry, Case Western Reserve University, Cleve- position. 
land, Ohio 44106. Additional diffraction data (7, 8, II) ex- 
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0 Tetrahedral Fe III 

0 Octahedral 02- 
TI 0 Octahedral Fe 

Vacancy 

FIG. 1. The 4 : 1 cluster. 

ists which can be interpreted in terms of 
two ordered defect phases, P’ and P”. P’ 
has been reported to have a disordered cu- 
bic incommensurate superstructure based 
on wustite with lattice parameter 2.6-2.7a, 
where a is the wustite lattice constant. P’ 
has been observed over the whole composi- 
tion range. Prr forms only after slow cooling 
(8) or after subeutectoid aging (7); it is also 
based on wustite but has a commensurate 
cubic superstructure with lattice constant 
5~. An explanation of the P’ and P” ordering 
was given some time ago by Ijima (12); 
however, Lebreton and Hobbs (8) have 
shown that the evidence for the incommen- 
surate character of P’ may be explained in 
terms of the small spatial extent of the or- 
dered “domains” of defect clusters, i.e., 
the apparent incommensurate nature is an 
experimental artifact, P’ being simply a 
poorly ordered form of P”. The thermody- 
namic aspects of the formation of P’ and P” 
have been discussed by Gavarri et al. (13). 

Under all conditions of temperature and 
composition, the lattice parameter of wus- 
tite does not vary markedly from 0.432 nm. 
Even after the composition range for wus- 
tite is exceeded and magnetite (Fe304) be- 
comes the stable phase, the equivalent lat- 
tice parameter of the anion sublattice only 
changes to 0.420 nm (14). Magnetite has the 
inverse spine1 structure and can be repre- 
sented as (Fe3+){Fe2+Fe3+}0z-, where the 
parentheses enclose tetrahedral ions and 
the braces enclose octahedral ions. The 4 : 1 
cluster can be recognized as a structural 
component of the spine1 lattice (Fig. 2), 
suggesting that the oxidation of wustite to 
magnetite may involve the formation and 

aggregation of defect clusters, although the 
basic cluster cannot have a spine1 arrange- 
ment (2). 

This paper describes a theoretical ap- 
proach to determining and understanding 
the structures and stabilities of defect clus- 
ters in wustite. Comparisons will be made 
to the recent electron diffraction results for 
P’ and P” wustite due to Lebreton and 
Hobbs (8), and the X-ray work of Koch and 
Cohen (2). 

There are two approaches that can be 
adopted in defining the defect formation en- 
ergy. We can begin with the idealized wus- 
tite lattice containing isolated cation vacan- 
cies, and then form the defect clusters, or 
the wustite lattice can be regarded as stoi- 
chiometric, with iron atoms then being re- 
moved to form the defects. For the latter 
process, the chemical reaction to form a 
4 : 1 defect cluster in wustite is written as 

9Fe*+(o) + Fe3+(t) + 5Fe3+(o) 
+ 3Fe0 + 4V’;;, (la) 

where Fe*+(o) represents a ferrous ion on 
an octahedral site, Fe3+(o) a ferric ion on an 
octahedral site, Fe3+(t) a ferric ion on a tet- 
rahedral site, Fe0 a neutral iron atom, and 
Vk, a vacant cation octahedral site. 

Alternatively, using the Kroger-Vink 
(15) notation for (la), we can write 

0 Oxygen 

Cotion I” Octahedral site 

Tctmhedml interstice 

Octohedrol Interstice [‘VI Cluster] 

FIG. 2. The 4 : 1 cluster in the spine1 lattice 
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9Fe$, + Fe;” + 5Fer, 
+ 3Fe + 4Vi, (lb) 

where the subscripts refer to sites (i is. an 
interstitial site), and the superscripts refer 
to formal charge relative to the usual va- 
lence of the stoichiometric phase, x repre- 
senting normal charges, and (a) and (‘) de- 
noting positive and negative charges, 
respectively. In this notation, sites can only 
be added or removed in stoichiometric ra- 
tios, and all equations must be balanced for 
sites, charge, and mass. In the following, all 
equations will be written in both notations. 

It is readily seen from Eqs. (la) and (lb) 
that to form a 4 : 1 complex, five octahedral 
cations must be present in the ferric state, 
in addition to the ferric interstitial ion. For 
the general m : IZ cluster of defects, one has 

3(m - n)Fe*+(o) + 
nFe3+(t) + (2m - 3n)Fe3+(o) 

+ (m - n)Fe” + mVk (2a) 

or 

3(m - n)Fe$, --, 
nFe;” + (2m - 3n)Fer, 

+ (m - n)Fe + mVk, (2b) 

where the 2m - 3n holes are assumed to be 
delocalized in the vicinity of the cluster. 

From the isolated vacancy clustering 
viewpoint, we may start with m - n octahe- 
dral vacancies and two (m - n) ferric ions 
and allow them to form an m : IZ cluster cor- 
responding to 

2(m - n)Fe3+(o) + (m - n)Vk, + 
nFe3+(t) + (2m - 3n)Fe3+(o) + mV’;;, 

(34 

or 

2(m - n)Fek + (m - n)V’& + 

nFej” + (2m - 3n)Fer, + mVk, (3b) 

For any given cluster, either of the for- 
mulations corresponding to Eqs. (2) or (3) 
can be employed to calculate a cluster for- 

7:2 (III> 7~2 ( IO) 

FIG. 3. The 7:2 (110) and (III) clustc :I?-%. 

mation energy. However, the results of 
such calculations yield the energy of forma- 
tion of a single cluster which incorporates 
(m - n) preexisting ferrous ion vacancies 
(Eq. (3)) or equivalently was formed by the 
expulsion of (m - n) iron atoms from the 
lattice (Eq. (2)). To permit comparison of 
clusters of different (m - n) vacancies, we 
normalize the formation energy by the fac- 
tor (m - n). The difference between the 
values given by Eqs. (2) and (3) after nor- 
malization is a constant, equal to the energy 
of formation of an isolated vacancy by re- 
moving a single Fe cation. We have found it 
convenient to use the formulation of Eq. (3) 
within a quantum mechanical model for 
cluster energies, structures, compositions, 
and spacings. 

Theoretical Model : Normalized Ion 
Energies 

If the stability of Fe3+ relative to Fe2+ is 
the dominating driving force for defect clus- 
ter formation, then a naive crystal-field ap- 
proach might be expected to apply. That is, 
the energy gained by cluster formation 
might be approximated by evaluating the d 
electron energy differences for the process 
given in Eqs. (2) and (3). However, such an 
emphasis on d electron energetics is incapa- 
ble of distinguishing between, for example, 
the 7:2 (110) edge-sharing and 7:2 (111) 
corner-sharing clusters in Fig. 3. Conse- 
quently a traditional crystal field approach 
cannot be used as the sole input for quan- 
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Fe’ (0~1 Fe%+ Fen(t4) Fe=(t,J 0’ (06) 

55.42 45.46 53.56 44.24 133.55 

o= (0s) 0’ co41 o= (cl31 o= (03tl o=(02tl 
132.66 131.72 130.56 133.04 132.04 

o- (02t21 o- (0, t21 o- I t41 o= ct31 0’ ( t21 
133.55 133.16 135.71 134.06 132.40 

FIG. 4. Normalized ion structure and energies 
(-eV). 

turn mechanical predictions of defect clus- 
ter structures and stabilities. A similar con- 
clusion has been reached recently regarding 
the use of crystal-field data in attempting to 
predict whether a given spine1 is normal or 
inverse (26). 

As a simple d electron crystal-field ap- 
proach is inappropriate, and pairwise po- 
tential approximations have convergence 
difficulties (9), another approach to the 
problem of predicting defect cluster struc- 
tures and stabilities is necessary. One of the 
recently developed high-accuracy solid 
state calculational techniques might be 
used (17), especially for very small defect 
clusters and unit cells (not the case here), 
but we must of necessity start with a sim- 
pler model. Our quantum mechanical 
model assumes a rigid oxygen sublattice to 
avoid, as a starting approximation, the 
effects of lattice relaxations around the de- 
fect clusters, although such relaxations are 
known to affect results of other model ap- 
proaches which use pairwise potentials (9). 

Our model is a generalization of the d 
electron crystal-field approach to include 
the oxygen anion 2s and 2p orbital energies 
as well as the cation orbital energies. We 
call these energies normalized anion and 

cation energies. Our admittedly simple 
model omits long-range Madelung-like con- 
tributions to the defect cluster energies, but 
focuses instead on the covalent bond en- 
ergy which includes polarization effects 
and short-range atom-atom repulsions. 
The adequacy of this type of theory is 
strongly supported by general conclusions 
in the literature concerning normal and in- 
verse spinels (16), and a study of the wurt- 
zite structure of BeO, where covalent as- 
pects of the 0 anion energy were sufficient 
to produce Be-O-Be angles in agreement 
with tight-binding band calculations, a Ma- 
delung sum, and experiment (18). 

ASED-MO Theory 

In the calculations we use small cluster 
models to define cation and anion orbital 
energy levels and the total normalized ion 
energies, within the approximations of the 
one-electron atom superposition and elec- 
tron delocalization molecular orbital 
(ASED-MO) theory (19, 20). It has re- 
cently been shown with regard to the opti- 
cal properties of wustite, magnetite, and 
hematite that small cluster models yield en- 
ergy levels which well-represent band ener- 
gies for large clusters within the ASED-MO 
theory (21) (our parameters come from past 
studies of oxidized iron surfaces and wus- 
tite, hematite, and magnetite; see (21)). For 
example, the d energy levels in an FeOd 
model of hematite are at nearly the middle 
of the two d bands formed in an Fe60Z4 clus- 
ter where all six ferric cations are bulk-co- 
ordinated. The same is true for the OzP 2s 
and 2p energy levels for OFe6 and larger 
clusters. 

Defect clusters in wustite contain octahe- 
dral and tetrahedral iron cations, and a total 
of 11 differently coordinated oxygen an- 
ions. The structures and normalized ion en- 
ergies of these various components of the 
defect clusters, based on ASED-MO calcu- 
lations, are shown in Fig. 4. Tetrahedral 
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Fe3+ and Fe2+ are 1.2 and 1.8 eV less stable 
than the corresponding octahedral cations. 
A comparable range of 02- energies is 
found, with one three-coordinated 02- be- 
ing 5.1 eV less stable than tetrahedrally co- 
ordinated 02-, which is the most stable spe- 
cies considered. The total normalized ion 
energies of various defect clusters are ob- 
tained by counting the number of anions 
and cations of each type which occur in and 
around each cluster, and summing their en- 
ergies. 

The ASED-MO theory includes a 
pairwise atom-atom repulsion energy, and 
a brief digression of this aspect of the the- 
ory is appropriate. The electronic charge 
density function of any molecule may be 
written as a sum of rigid free atom compo- 
nents and a delocalized bond-charge com- 
ponent. The binding energy is obtained by 
integrating the electrostatic force on a nu- 
cleus as atoms come together to form a 
bond. There are two components, a repul- 
sive term due to rigid atom superposition, 
and an attractive term due to bond forma- 
tion (19~). Their sum is exactly the binding 
energy. The repulsion energy is easily cal- 
culated, using charge densities from atomic 
wavefunctions, and is the pairwise energy 
mentioned above. Its Laplacian contains, 
to good accuracy, harmonic, cubic, and 
quartic force constants for molecules (22) 
and solids (23). Since the bond-charge den- 
sity function is unknown, only an estimate 
of the attractive energy can be obtained. A 
one-electron orbital energy obtained by 
solving a Hamiltonian similar in form to the 
extended Htickel Hamiltonian is, for many 
purposes, a good approximation to the at- 
tractive binding energy due to electron- 
charge delocalization (19b). This readily 
applicable molecular orbital approach em- 
phasizes the interaction energies which 
might be somewhat imprecisely called “co- 
valent.” Anion and cation valence orbital 
ionization potentials and anion valence or- 
bital exponents are adjusted from the litera- 

ture values to produce a reasonable charge 
transfer and bond length in diatomic Fe0 
(22). To this extent, self-consistency and 
ionicity are included in our molecular or- 
bital approximation to the electron delocali- 
zation energy. However, long-range ionic 
interactions are not included. Obviously we 
are using an approximate theory and model 
approach to the solid. The approximations 
and the model appear to go well together. 
The theory emphasizes orbital symmetries 
and overlaps within an ionic field due to the 
surrounding crystal, which is simply set 
equal to a constant first-order correction. 
The orbital interactions and bonding are 
known to be well-described by second-or- 
der perturbation theory terms which de- 
pend on orbital overlaps and energy differ- 
ences (24). 

The repulsion energy due to atom super- 
position, as described above, when com- 
bined with the extended Huckel-like orbital 
energy, allows calculation of bond lengths. 
For an octahedral Fe-O bond in the oxygen 
sublattice of wustite, the two-body repul- 
sion energy is 0.0176 eV and for a tetrahe- 
dral Fe-O bond, it is 0.1286 eV. 

Results: Cluster Structures and Energetics 

As a first step, consider the clustering of 
two vacancies. In this case no interstitial 
Fe(t) forms and one has 

2v:, + I$,-- v’;;, ) AE = 0.19 eV. 

Two vacancies thus slightly repel one an- 
other. However, if a third vacancy is added 
adjacent to a Fe3+ ion, the latter can jump 
into a tetrahedral site, thereby forming a 
4: 1 cluster 

I$,-V’;;, + Vk, + 4 : 1 cluster, 
AE = -1.71 eV; 

significant stabilization occurs, the 4: 1 
cluster forming with an overall stability of 
1.52 eV. The greater stabilities of 02-(05) 
and 02-(03t) anions (see Fig. 4) more than 



358 ANDERSON, GRIMES, AND HEUER 

6~2 0.29 

7:2 (110) 15:6 0.79 

16~5 0.70 

7~2 (Ill) 0.62 ,6:7 O.g, 
l2:4 0.62 

(Lebretcm) 

13:4 0.40 
20:10 I.14 (Koch-Cohen) 

FIG. 5. Defect clusters and their binding energies per 
vacancy (-eV). 

compensate for the destabilization of tetra- 
hedral Fe cations relative to octahedral Fe 
cations in this cluster. The anion stabilities 
are a consequence of the complete octahe- 
dral coordination for 02-(o,J and the short 
O-Fe(t) distance in 02-(o&; both cause co- 
valent stabilization of 0 relative to the 
02-(os) anions which occur within isolated 
vacancies. 

It can readily be shown that some larger 
clusters produced by edge-, face-, or cor- 
ner-sharing of 4: 1 clusters are stable, and 
thus will lead to the formation of the P’ and 
P” phases. However, only certain ordered 
defect clusters with a m : IZ ratio of about 
2.4 + 0.5 form (6); Fig. 5 shows the struc- 
tures and binding energy per vacancy for a 
number of the clusters studied which sat- 
isfy this condition. Other m : n clusters of 
higher energy than those shown in Fig. 5 
were studied but are not included here. 
Clusters with a zinc blende arrangement 

(tetrahedral Fe joined by tetrahedral 0 and 
comprising the middle column of Fig. 5) 
show the greatest stability, being more sta- 
ble than the Lebreton 12 : 4 cluster (8) and 
the Koch-Cohen 13 : 4 cluster (2). (In fact 
the geometry of the Koch-Cohen cluster is 
incompatible with a cluster spacing of 2.5a 
because it is centered on an octahedral va- 
cancy (8).) The zinc blende clusters owe 
their special stability to the large number of 
stable O(t) anions they contain. Surpris- 
ingly, zinc blende-type defect clusters have 
not previously received much attention in 
the literature. 

The stability of zinc blende-type clusters 
increases with cluster size and it was of in- 
terest to calculate the energy of an Fe0 
cluster with the zinc blende structure, and 
to compare this with a similar calculation 
for rock salt FeO. We are gratified that the 
rock salt structure was the more stable 
(0.11 eV). 

The model can also be used to find the 
energy gain when wustite with a stoi- 
chiometry of Fe0.750 transforms to the in- 
verse spine1 structure of magnetite. This 
energy is found to be 1.56 eV, which ex- 
ceeds stabilities of all defect clusters exam- 
ined. 

P”, the most ordered phase of wustite, 
has defect clusters spaced 2.5~ apart, as 
shown in Fig. 6, and occurs most readily in 

. . 

I i I I& 

FIG. 6. Model for P” phase composed of 16 : 7 defect 
clusters. 
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TABLE I 
WARREN SHORT-RANGE ORDER PARAMETER, (Y?, DETERMINED FOR A NUMBER OF CLUSTER TYPES 

13:4 16:7 13:.5 12~4 16:5 8:3 
Vector Experiment Koch-Cohen Zinc blende Zinc blende Lebreton Spine1 Face-sharing 

000 1 1 
400 0.57 0.37 
100 0.35 0.19 
142 0.00 -0.01 
110 0.06 -0.08 
St0 0.11 -0.16 
111 -0.21 -0.16 
$14 -0.26 -0.16 
$90 -@.02 -0.16 
111 -0.37 -0.16 

1 
0.32 
0.16 

-0.02 
-0.06 
-0.16 
-0.17 
-0.21 
-0.20 
-0.21 

1 1 1 1 
0.28 0.25 0.20 0.21 
0.04 0.09 -0.17 0.01 

-0.05 -0.04 -0.02 -0.14 
-0.07 -0.11 0.13 -0.19 
-0.16 -0.11 -0.09 -0.14 
-0.17 -0.17 -0.17 -0.19 
-0.16 -0.17 -0.14 -0.19 
-0.19 -0.17 -0.09 -0.19 
-0.19 -0.17 -0.17 -0.19 

wustites with composition between Fe,,880 
and Fe0.a90. This composition range per- 
mits a calculation of the net number of va- 
cancies per defect complex, m - n. We as- 
sume that the region of wustite between the 
complexes is stoichiometric. In the volume 
occupied by a single defect (2.5a), a total of 
p iron cations must exist, of which x will be 
vacant for any composition Fe1 -,O, pro- 
vided the vacancy distribution was homo- 
geneous. This same number of net vacan- 
cies must be present in the defect complex, 
so that px = (m - n) (see Eq. (3)). Since a 
unit cell of a rock salt structure Fe0 has 
four metal cations, we obtain 

x = (m - t~)/4(2.5)~. 

The (m - n) values of 7, 8, and 9 thus 
correspond to stoichiometries Fe0.8880, 
Fe0.8720, and Fe0.8sh0, respectively; or for a 
given stoichiometry, say, Fe0.880, we ex- 
pect 7.5 net vacancies per defect. In fact, 
for a stoichiometry of Feo.sgO, 7.5 net va- 
cancies is a minimum number, as a per- 
fectly ordered crystal of P” is never ob- 
tained, and we thus focus on the 13 : 5 and 
16 : 7 clusters. (Any imperfection in the or- 
dering implies a larger number of net vacan- 
cies per defect.) 

In order to show that the 16 : 7 and 13 : 5 
models fit the existing X-ray diffraction 
data of Koch and Cohen (2), the Warren 

short-range order parameter (oi) was calcu- 
lated, for comparison with the experimental 
(Y~. The ai parameter is given by the equa- 
tion 

i 

uvw 
PBA (yi= I--..-.- 

XA ) 

where PiIw is the probability that the 
[UVW] vector from an A atom terminates 
on a B atom, and XA is the random probabil- 
ity of a B atom being next to an A atom at 
the end of a vector [UVW]. In the present 
content, A is an occupied octahedral Fe 
site, and B is a vacant octahedral Fe site. 
We have also calculated ai for a number of 
other defect clusters of interest; the data 
are collected in Table I. 

It can be seen that the Koch-Cohen and 
16: 7 clusters give the best agreement with 
the experimental ai data, with the 13 : 5 and 
12 : 4 clusters being close behind. While the 
agreement with experiment for any of these 
models could be improved by slight dis- 
placements in the atom positions as Koch 
and Cohen attempted, such calculations 
would go beyond the spirit of this paper. It 
is important to note that the spine1 cluster is 
eliminated from consideration by the large 
negative value of (Yi for [ 1001, while the 8 : 3 
cluster found by Catlow and Fender (9) to 
have a large binding energy, gives consis- 
tently poor correlation (of course, the 
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-a- 
16: 

0’ 

C2” [2mm 1 symmetry 
i 
I-Y 

C, [ml symmetry 

FIG. 7. The 16: 7 and 13 : 5 clusters and their sym- 
metry elements. 

Koch-Cohen cluster is inconsistent with 
the TEM data of Lebreton and Hobbs (8)). 
The three defects remaining 16:7, 13: 5, 
and Lebreton 12 : 4 all give more or less ac- 
ceptable fits to the diffraction data, with the 
16: 7 having the greatest binding energy 
and the best fit to the Patterson (ai) data, 
while the 12 : 4 has the lowest binding en- 
ergy. 

For these reasons, we favor the 16 : 7 and 
13 : 5 clusters, which are shown in greater 
detail in Fig. 7. To decide between them 
will probably require either more refined 
calculations or further high-resolution elec- 
tron microscopy studies. 

In the P” phase, clusters are aligned in a 
cubic array of 2.5~ in one plane, but are 
offset by 0.5~ in the third dimension (8). 
Both the 13 : 5 and 16 : 7 clusters allow such 
an arrangement; the 16 : 7 cluster was used 
to draw Fig. 6. On the (100) plane, align- 
ment is perfect, except for the possibility 
that the clusters might be randomly rotated 
about the C axis. The orientation of the 
16 : 7 clusters about the C axis in the differ- 
ent planes are unspecified in Fig. 6. Be- 
tween planes, a 0.5 (110) shift is possible, 
giving rise to the zigzag seen by Lebreton 
(0 

Discussion and Summary 

We have developed a model for defect 
clustering in quenched wustite using cation 
and anion energies. The method is based on 
the supposition that an energy may be de- 
fined for an ion in a solid and that this en- 
ergy depends primarily on coordination. 
The normalized ion energy is determined 
using the one-electron atom superposition 
and electron delocalization molecular or- 
bital (ASED-MO) theory. The normalized 
ion energies have added to them nearest 
neighbor pairwise repulsion energies that 
are a part of the ASED-MO theory. Using 
the established fixed oxygen anion sublat- 
tice for wustite, we have found zinc blende- 
type defect clusters are most favored be- 
cause of the relative stability of the oxygen 
anions in this type of cluster. Of these, ei- 
ther a 13 : 5 or 16 : 7 cluster fits the composi- 
tional and structural data for the metasta- 
ble P” phase of wustite reasonably well. 
Either cluster will be surrounded by clouds 
of electron holes (octahedral ferric ions) 
which we suspect provides the cluster in- 
teractions responsible for defect cluster 
spacing and ordering. 

We expect that such defect clusters will 
“evaporate” at elevated temperatures, dis- 
persing isolated point defects throughout 
the wustite matrix because of the gain in 
configurational entropy. We have not taken 
this point into account in any of our calcula- 
tions, but recognize that at any elevated 
temperatures, equilibrium will be main- 
tained between the most stable defect clus- 
ters and the isolated point defects. 

Finally, our model allows us to correctly 
deduce that magnetite is stable relative to 
Fe,,,=,0 wustite, and that wustite is more 
stable in the rock salt than the zinc blende 
structure. 
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